top of page

🧾 Title:

Binder-Free Nickel Borate/Nickel Hydroxide Bifunctional Catalyst for Coupled Nitrate Reduction and Glycerol Oxidation Toward Sustainable Ammonia Production

Authors: Phiralang Marbaniang, Sagar Ingavale, Warunyoo Yoopensuk, Wanwisa Limphirat, Hao Wu, Weerachon Tolek, Wijak Yospanya, Joongjai Panpranot, Qian Wang, Soorathep Kheawhom, Chanon Pornrungroj*
Affiliations: Chulalongkorn University, Thailand; University of Science and Technology of China; National Taiwan University; University of Cambridge
Journal: ACS Applied Materials & Interfaces (2025), Vol. 17, pp. 52010–52023
DOI: 10.1021/acsami.5c09453

🧠 TL;DR (English)

This study presents a binder-free nickel borate/nickel hydroxide (Ni₃(BO₃)₂/Ni(OH)₂) catalyst grown directly on Ni foam for efficient electrochemical nitrate reduction reaction (NO₃RR). By coupling NO₃RR with glycerol oxidation reaction (GOR) at the anode, the system reduces energy input while producing both ammonia (NH₃) and formate. The optimized Ni8:8@Ni electrode achieved an NH₃ yield rate of 1.49 ± 0.04 mmol h⁻¹ cm⁻² and 81 ± 4.8% Faradaic efficiency at −0.55 V vs RHE. The integrated NO₃RR||GOR cell operates at 1.47 V (10 mA cm⁻²) with ~13% energy savings compared to NO₃RR||OER. This bifunctional catalyst platform offers a scalable, energy-efficient route to green ammonia production and value-added co-products.

 

🪴 Plain Language Summary (TH)

งานวิจัยนี้พัฒนาตัวเร่งปฏิกิริยานิกเกิลบอเรต–นิกเกิลไฮดรอกไซด์แบบไม่ใช้สารยึดติด โดยปลูกบนโฟมนิกเกิลโดยตรง เพื่อเปลี่ยนน้ำเสียที่มีไนเตรตให้เป็นแอมโมเนียด้วยกระบวนการทางไฟฟ้าเคมี พร้อมกับออกซิเดชันของกลีเซอรอลซึ่งเป็นผลพลอยได้จากไบโอดีเซล เพื่อประหยัดพลังงานและสร้างผลิตภัณฑ์เคมีมูลค่าสูง ระบบนี้ช่วยลดพลังงานที่ใช้ในการผลิตแอมโมเนียได้ราว 13% และเป็นแนวทางที่มีศักยภาพสำหรับการผลิตแอมโมเนียสีเขียวอย่างยั่งยืน

🧭 Key Contributions

  • First demonstration of binder-free Ni₃(BO₃)₂/Ni(OH)₂ catalyst grown directly on Ni foam using a simple hydrothermal method.

  • Achieves high NH₃ yield and Faradaic efficiency for NO₃RR.

  • Integrates nitrate reduction with glycerol oxidation, lowering cell voltage.

  • Demonstrates 13% energy savings vs conventional NO₃RR||OER systems.

  • Provides a dual-function platform for green fertilizer and chemical production.

  • 🧪 Methods

  • In situ etching–growth of mixed-phase Ni₃(BO₃)₂/Ni(OH)₂ on Ni foam (urea + boric acid precursors).

  • Electrochemical testing in 1 M KOH with 0.1 M KNO₃ at the cathode and 0.1 M glycerol at the anode.

  • XRD, SEM/TEM, XAS, XPS used to characterize catalyst structure.

  • LSV and CPE used to evaluate catalytic activity and stability.

  • 📊 Key Results

  • NH₃ yield: 1.49 ± 0.04 mmol h⁻¹ cm⁻² at −0.55 V vs RHE.

  • FENH₃: 81 ± 4.8% (maximum 87%).

  • Coupled NO₃RR||GOR voltage: 1.47 V (10 mA cm⁻²).

  • Formate yield: 0.101 mmol h⁻¹ cm⁻², FEHCOO⁻ 73%.

  • Energy saving: ~13% vs NO₃RR||OER.

  • Glycerol conversion: 22.8%.

  • Excellent stability over 18 cycles.

  • ⚡ Implications

  • Enables decentralized, low-carbon NH₃ production.

  • Provides valorization pathway for biodiesel glycerol waste.

  • Reduces energy cost of fertilizer production.

  • Demonstrates scalable co-electrolysis strategy for circular nitrogen and carbon utilization.

  • 💬 FAQ (Q&A)

  • Q1: Why use nitrate instead of N₂ for ammonia synthesis?
    A: Nitrate has higher solubility and lower activation energy than N₂, enabling higher NH₃ yield and lower energy cost.

  • Q2: What makes this catalyst binder-free?
    A: The active Ni₃(BO₃)₂/Ni(OH)₂ layer is grown directly from the Ni foam substrate, avoiding polymeric binders that impede charge transfer.

  • Q3: What’s the advantage of coupling NO₃RR with GOR?
    A: Replacing OER with GOR lowers cell voltage and enables co-production of formate from glycerol waste.

  • Q4: Is this scalable?
    A: A flow cell test at 4 cm² showed comparable performance, indicating good scalability potential.

  • Q5: What’s the environmental impact?
    A: This approach addresses nitrate pollution and reduces greenhouse gas emissions associated with conventional Haber–Bosch NH₃ production.

  • Q6: Can this be integrated with renewable energy?
    A: Yes. The low operating voltage makes it compatible with intermittent renewable power sources.

  • Q7: What is the energy saving compared to conventional systems?
    A: Approximately 13% lower energy demand versus NO₃RR||OER systems.

  • Q8: What are the main products of the anodic reaction?
    A: Formate (HCOO⁻) is selectively produced from glycerol.

  • “nitrate reduction catalyst for green ammonia”

  • “binder-free nickel borate hydroxide electrolysis”

  • “coupled NO3RR GOR low voltage”

  • “ammonia synthesis with formate co-production”

  • “Ni3(BO3)2 Ni(OH)2 electrocatalyst efficiency”

  • “glycerol oxidation energy saving electrolyzer”

  • “Chulalongkorn University ammonia research”

  • “sustainable fertilizer production 2025”

  • Phiralang Marbaniang, Sagar Ingavale, Warunyoo Yoopensuk, Wanwisa Limphirat, Hao Wu, Weerachon Tolek, Wijak Yospanya, Joongjai Panpranot, Qian Wang, Soorathep Kheawhom, Chanon Pornrungroj. Binder-Free Nickel Borate/Nickel Hydroxide Bifunctional Catalyst for Coupled Nitrate Reduction and Glycerol Oxidation Toward Sustainable Ammonia Production. ACS Applied Materials & Interfaces (2025) 17, 52010–52023. DOI: 10.1021/acsami.5c09453

Copyright © 2023 Chanon Lab. All Rights Reserved.

bottom of page